
The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

Trials with TP-based Programming
for Interactive Course Material

Jan Ročnik
jan.rocnik@student.tugraz.at

IST, SPSC
Graz University of Technology

Austria

Abstract

Traditional course material in engineering disciplines lacks an important component, inter-
active support for step-wise problem solving. Theorem-Proving (TP) technology is appropriate
for one part of such support, in checking user-input. For the other part of such support, guiding
the learner towards a solution, another kind of technology is required.

Both kinds of support can be achieved by so-called Lucas-Interpretation which combines de-
duction and computation and, for the latter, uses a novel kind of programming language. This
language is based on (Computer) Theorem Proving (TP), thus called a “TP-based programming
language”.

This paper is the experience report of the first “application programmer” using this language
for creating exercises in step-wise problem solving for an advanced lab in Signal Processing. The
tasks involved in TP-based programming are described together with the experience gained from
a prototype of the programming language and of it’s interpreter.

The report concludes with a positive proof of concept, states insufficiency usability of the pro-
totype and captures the requirements for further development of both, the programming language
and the interpreter.

1 Introduction
Traditional course material in engineering disciplines lacks an important component, interactive sup-
port for step-wise problem solving. The lack becomes evident by comparing existing course material
with the sheets collected from written exams (in case solving engineering problems is not deteriorated
to multiple choice tests) on the topics addressed by the materials. Theorem-Proving (TP) technology
can provide such support by specific services. An important part of such services is called “next-step-
guidance”, generated by a specific kind of “TP-based programming language”. In the ISAC-project 1

such a language is prototyped in line with [7] and built upon the theorem prover Isabelle [14] 2. The
1http://www.ist.tugraz.at/projects/isac/
2http://isabelle.in.tum.de/

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

TP services are coordinated by a specific interpreter for the programming language, called Lucas-
Interpreter [12]. The language will be briefly re-introduced in order to make the paper self-contained.

The main part of the paper is an account of first experiences with programming in this TP-based
language. The experience was gained in a case study by the author. The author was considered an
ideal candidate for this study for the following reasons: as a student in Telematics (computer sci-
ence with focus on Signal Processing) he had general knowledge in programming as well as specific
domain knowledge in Signal Processing; and he was not involved in the development of ISAC’s pro-
gramming language and interpreter, thus being a novice to the language.

The goals of the case study were: (1) to identify some TP-based programs for interactive course
material for a specific “Advanced Signal Processing Lab” in a higher semester, (2) respective pro-
gram development with as little advice as possible from the ISAC-team and (3) to document records
and comments for the main steps of development in an Isabelle theory; this theory should provide
guidelines for future programmers. An excerpt from this theory is the main part of this paper.

The major example resulting from the case study will be used as running example throughout this
paper. This example requires a program resembling the size of real-world applications in engineering;
such a size was considered essential for the case study, since there are many small programs for a long
time (mainly concerned with elementary Computer Algebra like simplification, equation solving,
calculus, etc. 3)

The mathematical background of the running example is the following: In Signal Processing,
“the Z-transform for discrete-time signals is the counterpart of the Laplace transform for continuous-
time signals, and they each have a similar relationship to the corresponding Fourier transform. One
motivation for introducing this generalization is that the Fourier transform does not converge for
all sequences, and it is useful to have a generalization of the Fourier transform that encompasses a
broader class of signals. A second advantage is that in analytic problems, the Z-transform notation is
often more convenient than the Fourier transform notation.” [15, p. 128]. The Z-transform is defined
as

X(z) =
∞∑

n=−∞

x[n]z−n

where a discrete time sequence x[n] is transformed into the function X(z) where z is a continuous
complex variable. The inverse function is addressed in the running example and can be determined
by the integral

x[n] =
1

2πj

∮
C

X(z) · zn−1dz

where the letter C represents a contour within the range of convergence of the Z-transform. The unit
circle can be a special case of this contour. Remember that j is the complex number in the domain of
engineering. As this transform requires high effort to be solved, tables of commonly used transform
pairs are used in education as well as in engineering practice; such tables can be found at [20] or [15,
Table 3.1] as well. A completely solved and more detailed example can be found at [15, p. 149f].

Following conventions in engineering education and in practice, the running example solves the
problem by use of a table.

3The programs existing in the ISAC prototype are found at http://www.ist.tugraz.at/projects/isac/www/kbase/met/in-
dex met.html

92

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

Support for interactive stepwise problem solving in the ISAC prototype is shown in Fig.1 4: A
student inputs formulas line by line on the “Worksheet”, and each step (i.e. each formula on com-
pletion) is immediately checked by the system, such that at most one inconsistent formula can reside
on the Worksheet (on the input line, marked by the red ⊗). If the student gets stuck and does not

Figure 1: Step-wise problem solving guided by the TP-based program

know the formula to proceed with, there is the button NEXT presenting the next formula on the
Worksheet; this feature is called “next-step-guidance” [12]. The button AUTO immediately delivers
the final result in case the student is not interested in intermediate steps.

Adaptive dialogue guidance is already under construction [4] and the two buttons will disappear,
since their presence is not wanted in many learning scenarios (in particular, not in written exams).

The buttons Theories , Problems and Methods are the entry points for interactive lookup of
the underlying knowledge. For instance, pushing Theories in the configuration shown in Fig.1, pops
up a “Theory browser” displaying the theorem(s) justifying the current step. The browser allows to
lookup all other theories, thus supporting indepentend investigation of underlying definitions, theo-
rems, proofs — where the HTML representation of the browsers is ready for arbitrary multimedia
add-ons. Likewise, the browsers for Problems and Methods support context sensitive as well as
interactive access to specifications and programs respectively.

There is also a simple web-based representation of knowledge items; the items under considera-
tion in this paper can be looked up as well 5 6 7.

4 Fig.1 also shows the prototype status of ISAC; for instance, the lack of 2-dimensional presentation and input of
formulas is the major obstacle for field-tests in standard classes.

5http://www.ist.tugraz.at/projects/isac/www/kbase/thy/browser info/HOL/HOL-Real/Isac/Inverse Z Transform.thy
6http://www.ist.tugraz.at/projects/isac/www/kbase/thy/browser info/HOL/HOL-Real/Isac/Partial Fractions.thy
7http://www.ist.tugraz.at/projects/isac/www/kbase/thy/browser info/HOL/HOL-Real/Isac/Build Inverse Z Transform.thy

93

http://www.ist.tugraz.at/projects/isac/www/kbase/thy/browser_info/HOL/HOL-Real/Isac/Inverse_Z_Transform.thy
http://www.ist.tugraz.at/projects/isac/www/kbase/thy/browser_info/HOL/HOL-Real/Isac/Partial_Fractions.thy
http://www.ist.tugraz.at/projects/isac/www/kbase/thy/browser_info/HOL/HOL-Real/Isac/Build_Inverse_Z_Transform.thy

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

The paper is structured as follows: The introduction §1 is followed by a brief re-introduction
of the TP-based programming language in §2, which extends the executable fragment of Isabelle’s
language (§2.1) by tactics which play a specific role in Lucas-Interpretation and in providing the TP
services (§2.2). The main part §3 describes the main steps in developing the program for the running
example: prepare domain knowledge, implement the formal specification of the problem, prepare the
environment for the interpreter, implement the program in §3.1 to §3.6 respectively. The work-flow
of programming, debugging and testing is described in §4. The conclusion §5 will give directions
identified for future development.

2 ISACS’s Prototype for a Programming Language
The prototype of the language and of the Lucas-Interpreter is briefly described from the point of view
of a programmer. The language extends the executable fragment of Higher-Order Logic (HOL) in the
theorem prover Isabelle [14]8.

2.1 The Executable Fragment of Isabelle’s Language
The executable fragment consists of data-type and function definitions. It’s usability even suggests
that fragment for introductory courses [13]. HOL is a typed logic whose type system resembles that
of functional programming languages. Thus there are

base types, in particular bool, the type of truth values, nat, int, complex, and the types of natural,
integer and complex numbers respectively in mathematics.

type constructors allow to define arbitrary types, from set, list to advanced data-structures like trees,
red-black-trees etc.

function types, denoted by ⇒.

type variables, denoted by ′a,′ b etc, provide type polymorphism. Isabelle automatically computes
the type of each variable in a term by use of Hindley-Milner type inference [9, 10].

Terms are formed as in functional programming by applying functions to arguments. If f is a
function of type τ1 ⇒ τ2 and t is a term of type τ1 then f t is a term of type τ2. t :: τ means that term
t has type τ . There are many predefined infix symbols like + and ≤ most of which are overloaded for
various types.

HOL also supports some basic constructs from functional programming:

01 (if b then t1 else t2)
02 (let x = t in u)
03 (case t of pat1 ⇒ t1 | . . . | patn ⇒ tn)

The running example’s program uses some of these elements (marked by tt-font on p.101): for
instance let. . .in in lines 02 . . . 13. In fact, the whole program is an Isabelle term with specific

8http://isabelle.in.tum.de/

94

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

function constants like program, Take, Rewrite, Subproblem and Rewrite Set in lines 01,
03. 04, 07, 10 and 11, 12 respectively.

Formulae are terms of type bool. There are the basic constants True and False and the usual
logical connectives (in decreasing order of precedence): ¬,∧,∨,→.

Equality is available in the form of the infix function = of type a ⇒ a ⇒ bool . It also works for
formulas, where it means “if and only if”.

Quantifiers are written ∀x. P and ∃x. P . Quantifiers lead to non-executable functions, so func-
tions do not always correspond to programs, for instance, if comprising
(if ∃x. P then e1 else e2).

2.2 ISAC’s Tactics for Lucas-Interpretation
The prototype extends Isabelle’s language by specific statements called tactics 9. For the programmer
these statements are functions with the following signatures:

Rewrite: theorem ⇒ term ⇒ term ∗ term list : this tactic applies theorem to a term yielding a term
and a term list, the list are assumptions generated by conditional rewriting. For instance, the
theorem b 6= 0 ∧ c 6= 0 ⇒ a·c

b·c = a
b

applied to the term 2·x
3·x yields (2

3
, [x 6= 0]).

Rewrite Set: ruleset ⇒ term ⇒ term ∗ term list : this tactic applies ruleset to a term; ruleset is
a confluent and terminating term rewrite system, in general. If none of the rules (theorems) is
applicable on interpretation of this tactic, an exception is thrown.

Substitute: substitution ⇒ term ⇒ term: allows to access sub-terms.

Take: term ⇒ term: this tactic has no effect in the program; but it creates a side-effect by Lucas-
Interpretation (see below) and writes term to the Worksheet.

Subproblem: theory ∗ specification ∗ method ⇒ argument list ⇒ term: this tactic is a generali-
sation of a function call: it takes an argument list as usual, and additionally a triple consisting
of an Isabelle theory, an implicit specification of the program and a method containing data for
Lucas-Interpretation, last not least a program (as an explicit specification) 10.

The tactics play a specific role in Lucas-Interpretation [12]: they are treated as break-points where,
as a side-effect, a line is added to a calculation as a protocol for proceeding towards a solution in
step-wise problem solving. At the same points Lucas-Interpretation serves interactive tutoring and
hands over control to the user. The user is free to investigate underlying knowledge, applicable
theorems, etc. And the user can proceed constructing a solution by input of a tactic to be applied or
by input of a formula; in the latter case the Lucas-Interpreter has built up a logical context (initialised
with the precondition of the formal specification) such that Isabelle can derive the formula from this
context — or give feedback, that no derivation can be found.

9ISAC’s. These tactics are different from Isabelle’s tactics: the former concern steps in a calculation, the latter concern
proofs.

10In interactive tutoring these three items can be determined explicitly by the user.

95

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

2.3 Tactics as Control Flow Statements
The flow of control in a program can be determined by if then else and case of as mentioned
on p.94 and also by additional tactics:

Repeat: tactic ⇒ term ⇒ term: iterates over tactics which take a term as argument as long as a
tactic is applicable (for instance, Rewrite Set might not be applicable).

Try: tactic ⇒ term ⇒ term: if tactic is applicable, then it is applied to term, otherwise term is
passed on without changes.

Or: tactic ⇒ tactic ⇒ term ⇒ term: If the first tactic is applicable, it is applied to the first term
yielding another term, otherwise the second tactic is applied; if none is applicable an exception
is raised.

@@: tactic ⇒ tactic ⇒ term ⇒ term: applies the first tactic to the first term yielding an interme-
diate term (not appearing in the signature) to which the second tactic is applied.

While: term :: bool ⇒ tactic ⇒ term ⇒ term: if the first term is true, then the tactic is applied
to the first term yielding an intermediate term (not appearing in the signature); the intermediate
term is added to the environment the first term is evaluated in etc. as long as the first term is
true.

The tactics are not treated as break-points by Lucas-Interpretation and thus do neither contribute to
the calculation nor to interaction.

3 Concepts and Tasks in TP-based Programming
This section presents all the concepts involved in TP-based programming and all the tasks to be
accomplished by programmers. The presentation uses the running example from Fig.1 on p.93.

3.1 Mechanization of Math — Domain Engineering
The running example requires to determine the inverse Z-transform for a class of functions. The
domain of Signal Processing is accustomed to specific notation for the resulting functions, which are
absolutely capable of being totalled and are called step-response: u[n], where u is the function, n is
the argument and the brackets indicate that the arguments are discrete. Surprisingly, Isabelle accepts
the rules for z−1 in this traditional notation 11:

01 axiomatization where
02 rule1: “z−1 1 = δ[n]” and
03 rule2: “||z|| > 1 ⇒ z−1 z/(z − 1) = u[n]” and
04 rule3: “||z|| < 1 ⇒ z/(z − 1) = −u[−n− 1]” and
05 rule4: “||z|| > || α || ⇒ z/(z − α) = αn · u[n]” and
06 rule5: “||z|| < ||α|| ⇒ z/(z − α) = −(αn) · u[−n− 1]” and
07 rule6: “||z|| > 1 ⇒ z/(z − 1)2 = n · u[n]”

11Isabelle experts might be particularly surprised, that the brackets do not cause errors in typing (as lists).

96

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

These 6 rules can be used as conditional rewrite rules, depending on the respective convergence
radius. Satisfaction from accordance with traditional notation contrasts with the above word axioma-
tization: As TP-based, the programming language expects these rules as proved theorems, and not as
axioms implemented in the above brute force manner; otherwise all the verification efforts envisaged
(like proof of the post-condition, see below) would be meaningless.

Isabelle provides a large body of knowledge, rigorously proved from the basic axioms of mathe-
matics 12. In the case of the Z-transform the most advanced knowledge can be found in the theories
on Multivariate Analysis 13. However, building up knowledge such that a proof for the above rules
would be reasonably short and easily comprehensible, still requires lots of work (and is definitely out
of scope of our case study).

3.2 Preparation of Simplifiers for the Program
All evaluation in the prototype’s Lucas-Interpreter is done by term rewriting on Isabelle’s terms, see
§3.5 below; in this section some of respective preparations are described. In order to work reliably
with term rewriting, the respective rule-sets must be confluent and terminating [1], then they are called
(canonical) simplifiers. These properties do not go without saying, their establishment is a difficult
task for the programmer; this task is not yet supported in the prototype.

The prototype rewrites using theorems only. Axioms which are theorems as well have been al-
ready shown in §3.1 on p.96 , we assemble them in a rule-set and apply them in ML as follows:

01 val inverse_z = Rls
02 {id = "inverse_z",
03 rew_ord = dummy_ord,
04 erls = Erls,
05 rules = [Thm ("rule1", @{thm rule1}), Thm ("rule2", @{thm rule1}),
06 Thm ("rule3", @{thm rule3}), Thm ("rule4", @{thm rule4}),
07 Thm ("rule5", @{thm rule5}), Thm ("rule6", @{thm rule6})],
08 errpatts = [],
09 scr = ""}

The items, line by line, in the above record have the following purpose:

01..02 the ML-value inverse z stores it’s identifier as a string for “reflection” when switching between
the language layers of Isabelle/ML (like in the Lucas-Interpreter) and Isabelle/Isar (like in the
example program on p.101 on line 12).

03..04 both, (a) the rewrite-order [1] rew ord and (b) the rule-set erls are trivial here: (a) the rules in
07..12 don’t need ordered rewriting and (b) the assumptions of the rules need not be evaluated
(they just go into the context during rewriting).

05..07 the rules are the axioms from p.96; also ML-functions (§3.3) can come into this list as shown in
§4.1; so they are distinguished by type-constructors Thm and Calc respectively; for the purpose
of reflection both contain their identifiers.

12This way of rigorously deriving all knowledge from first principles is called the LCF-paradigm in TP.
13http://isabelle.in.tum.de/dist/library/HOL/HOL-Multivariate Analysis

97

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

08..09 are error-patterns not discussed here and scr is prepared to get a program, automatically gen-
erated by ISAC for producing intermediate rewrites when requested by the user.

3.3 Preparation of ML-Functions
Some functionality required in programming, cannot be accomplished by rewriting. So the proto-
type has a mechanism to call functions within the rewrite-engine: certain redexes in Isabelle terms
call these functions written in SML [11], the implementation and meta-language of Isabelle. The
programmer has to use this mechanism.

In the running example’s program on p.101 the lines 05 and 06 contain such functions; we go into
the details with argument in X z;. This function fetches the argument from a function application:
Line 03 in the example calculation on p.104 is created by line 06 of the example program on p.101
where the program’s environment assigns the value X z to the variable X z; so the function shall extract
the argument z.

In order to be recognised as a function constant in the program source the constant needs to be
declared in a theory, here in Build Inverse Z Transform.thy; then it can be parsed in the context ctxt
of that theory:

01 consts
02 argument’_in :: "real => real" ("argument’_in _" 10)

The function body below is implemented directly in SML, i.e in an ML {* *} block; the function
definition provides a unique prefix eval to the function name:

01 ML {*
02 fun eval_argument_in _
03 "Build_Inverse_Z_Transform.argument’_in"
04 (t as (Const ("Build_Inverse_Z_Transform.argument’_in", _) $(f $arg))) _ =
05 if is_Free arg (*could be something to be simplified before*)
06 then SOME (term2str t ˆ"="ˆ term2str arg, Trueprop $(mk_equality (t, arg)))
07 else NONE
08 | eval_argument_in _ _ _ _ = NONE;
09 *}

The function body creates either NONE telling the rewrite-engine to search for the next redex, or
creates an ad-hoc theorem for rewriting, thus the programmer needs to adopt many technicalities of
Isabelle, for instance, the Trueprop constant.

This sub-task particularly sheds light on basic issues in the design of a programming language,
the integration of differential language layers, the layer of Isabelle/Isar and Isabelle/ML.

Another point of improvement for the prototype is the rewrite-engine: The program on p.101
would not allow to contract the two lines 05 and 06 to

05/06 (z::real) = argument in (lhs X eq) ;

because nested function calls would require creating redexes inside-out; however, the prototype’s
rewrite-engine only works top down from the root of a term down to the leaves.

How all these technicalities are to be checked in the prototype is shown in §4.1 below.

98

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

3.4 Specification of the Problem
Mechanical treatment requires to translate a textual problem description like in Fig.1 on p.93 into a
formal specification. The formal specification of the running example could look like is this 14:

Specification:
input : filterExpression X z = 3

z− 1
4
+− 1

8
∗ 1
z

, domain R− {1
2 ,

−1
4 }

precond : 3
z− 1

4
+− 1

8
∗ 1
z

continuous on R− {1
2 ,

−1
4 }

output : stepResponse x[n]
postcond : TODO

The implementation of the formal specification in the present prototype, still bar-bones without
support for authoring, is done like that:

00 ML {*
01 store_specification
02 (prepare_specification
03 "pbl_SP_Ztrans_inv"
04 ["Jan Rocnik"]
05 thy
06 (["Inverse", "Z_Transform", "SignalProcessing"],
07 [("#Given", ["filterExpression X_eq", "domain D"]),
08 ("#Pre" , ["(rhs X_eq) is_continuous_in D"]),
09 ("#Find" , ["stepResponse n_eq"]),
10 ("#Post" , [" TODO "])])
11 prls
12 NONE
13 [["SignalProcessing","Z_Transform","Inverse"]]);
14 *}

Although the above details are partly very technical, we explain them in order to document some
intricacies of TP-based programming in the present state of the ISAC prototype:

01..02 store specification: stores the result of the function prep specification in a global reference
Unsynchronized.ref, which causes principal conflicts with Isabelle’s asynchronous document
model [18] and parallel execution [17] and is under reconstruction already.

prep specification: translates the specification to an internal format which allows efficient pro-
cessing; see for instance line 07 below.

03..04 are a unique identifier for the specification within ISAC and the “mathematics author” holding
the copy-rights.

05 is the Isabelle theory required to parse the specification in lines 07..10.

06 is a key into the tree of all specifications as presented to the user (where some branches might be
hidden by the dialogue component).

14The “TODO” in the postcondition indicates, that postconditions are not yet handled in the prototype; in particular,
the postcondition, i.e. the correctness of the result is not yet automatically proved.

99

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

07..10 are the specification with input, pre-condition, output and post-condition respectively; note
that the specification contains variables to be instantiated with concrete values for a concrete
problem — thus the specification actually captures a class of problems. The post-condition is
not handled in the prototype presently.

11 is a rule-set (defined elsewhere) for evaluation of the pre-condition: (rhs X eq) is continuous in D,
instantiated with the values of a concrete problem, evaluates to true or false — and all evaluation
is done by rewriting determined by rule-sets.

12 NONE: could be SOME “solve ...” for a problem associated to a function from Computer Algebra
(like an equation solver) which is not the case here.

13 is a list of methods solving the specified problem (here only one list item) represented analogously
to 06.

3.5 Implementation of the Method
A method collects all data required to interpret a certain program by Lucas-Interpretation. The
program from p.101 of the running example is embedded on the last line in the following method:

00 ML {*
01 store_method
02 (prep_method
03 "SP_InverseZTransformation_classic"
04 ["Jan Rocnik"]
05 thy
06 (["SignalProcessing", "Z_Transform", "Inverse"],
07 [("#Given", ["filterExpression X_eq", "domain D"]),
08 ("#Pre" , ["(rhs X_eq) is_continuous_in D"]),
09 ("#Find" , ["stepResponse n_eq"]),
10 rew_ord erls
11 srls prls nrls
12 errpats
13 program);
14 *}

The above code stores the whole structure analogously to a specification as described above:

01..06 are identical to those for the example specification on p.99.

07..09 show something looking like the specification; this is a guard: as long as not all Given items
are present and the Pre-conditions is not true, interpretation of the program is not started.

10..11 all concern rewriting (the respective data are defined elsewhere): rew ord is the rewrite or-
der [1] in case program contains a Rewrite tactic; and in case the respective rule is a conditional
rewrite-rule, erls features evaluating the conditions. The rule-sets srls, prls, nrls feature evalu-
ating (a) the ML-functions in the program (e.g. lhs, argument in, rhs in the program on p.101,
(b) the pre-condition analogous to the specification in line 11 on p.99 and (c) is required for the
derivation-machinery checking user-input formulas.

100

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

12..13 errpats are error-patterns [4] for this method and program is the variable holding the example
from p.101.

The many rule-sets above cause considerable efforts for the programmers, in particular, because there
are no tools for checking essential features of rule-sets.

3.6 Implementation of the TP-based Program
So finally all the prerequisites are described and the final task can be addressed. The program below
comes back to the running example: it computes a solution for the problem from Fig.1 on p.93. The
reader is reminded of §2.1, the introduction of the programming language:

00 ML {*
00 val program =
01 ”Program InverseZTransform (X eq::bool) =
02 let
03 X eq = Take X eq ;
04 X eq = Rewrite prep for part frac X eq ;
05 (X z::real) = lhs X eq ;
06 (z::real) = argument in X z;
07 (part frac::real) = SubProblem
08 (Isac, [partial fraction, rational, simplification], [])
09 [(rhs X eq)::real, z::real];
10 (X’ eq::bool) = Take ((X’::real => bool) z = ZZ 1 part frac) ;
11 X’ eq = ((Rewrite Set prep for inverse z) @@
12 (Rewrite Set inverse z)) X’ eq
13 in
14 X’ eq”
15 *}

The program is represented as a string and part of the method in §3.5. As mentioned in §2 the
program is purely functional and lacks any input statements and output statements. So the steps of
calculation towards a solution (and interactive tutoring in step-wise problem solving) are created as
a side-effect by Lucas-Interpretation. The side-effects are triggered by the tactics Take, Rewrite,
SubProblem and Rewrite Set in the above lines 03, 04, 07, 10, 11 and 12 respectively. These
tactics produce the respective lines in the calculation on p.103.

The above lines 05, 06 do not contain a tactics, so they do not immediately contribute to the
calculation on p.103; rather, they compute actual arguments for the SubProblem in line 09 15. Line
11 contains tactical @@.

The above program also indicates the dominant role of interactive selection of knowledge in the
three-dimensional universe of mathematics. The SubProblem in the above lines 07..09 is more
than a function call with the actual arguments [(rhs X eq)::real, z::real]. The programmer has to
determine three items:

1. the theory, in the example Isac because different methods can be selected in Pt.3 below, which
are defined in different theories with Isac collecting them.

15The tactics also are break-points for the interpreter, where control is handed over to the user in interactive tutoring.

101

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

2. the specification identified by [partial fraction, rational, simplification] in the tree of specifica-
tions; this specification is analogous to the specification of the main program described in §3.4;
the problem is to find a “partial fraction decomposition” for a univariate rational polynomial.

3. the method in the above example is [], i.e. empty, which supposes the interpreter to select one
of the methods predefined in the specification, for instance in line 13 in the running example’s
specification on p.99 16.

The program code, above presented as a string, is parsed by Isabelle’s parser — the program is an
Isabelle term. This fact is expected to simplify verification tasks in the future; on the other hand, this
fact causes troubles in error detection which are discussed as part of the work-flow in the subsequent
section.

4 Work-flow of Programming in the Prototype
The new prover IDE Isabelle/jEdit [19] is a great step forward for interactive theory and proof devel-
opment. The ISAC-prototype re-uses this IDE as a programming environment. The experiences from
this re-use show, that the essential components are available from Isabelle/jEdit. However, additional
tools and features are required to achieve acceptable usability.

So notable experiences are reported here, also as a requirement capture for further development
of TP-based languages and respective IDEs.

4.1 Preparations and Trials
The many sub-tasks to be accomplished before the first line of program code can be written and tested
suggest an approach which step-wise establishes the prerequisites. The case study underlying this pa-
per [16] documents the approach in a separate Isabelle theory, Build Inverse Z Transform.thy 17. Part
II in the study comprises this theory, LATEXed from the theory by use of Isabelle’s document prepara-
tion system. This paper resembles the approach in §3.1 to §3.5, which in actual implementation work
involves several iterations.

For instance, only the last step, implementing the program described in §3.5, reveals details re-
quired. Let us assume, this is the ML-function argument in required in line 06 of the example pro-
gram on p.101; how this function needs to be implemented in the prototype has been discussed in
§3.3 already.

Now let us assume, that calling this function from the program code does not work; so testing
this function is required in order to find out the reason: type errors, a missing entry of the function
somewhere or even more nasty technicalities . . .

01 ML {*
02 val SOME t = parseNEW ctxt "argument_in (X (z::real))";
03 val SOME (str, t’) = eval_argument_in ""

16The freedom (or obligation) for selection carries over to the student in interactive tutoring.
17http://www.ist.tugraz.at/projects/isac/publ/Build Inverse Z Transform.thy

102

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

04 "Build_Inverse_Z_Transform.argument’_in" t 0;
05 term2str t’;
06 *}
07 val it = "(argument_in X z) = z": string

So, this works: we get an ad-hoc theorem, which used in rewriting would reduce argument in X
z to z. Now we check this reduction and create a rule-set rls for that purpose:

01 ML {*
02 val rls = append_rls "test" e_rls
03 [Calc ("Build_Inverse_Z_Transform.argument’_in", eval_argument_in "")]
04 val SOME (t’, asm) = rewrite_set_ @{theory} rls t;
05 *}
06 val t’ = Free ("z", "RealDef.real"): term
07 val asm = []: term list

The resulting term t’ is Free ("z", "RealDef.real"), i.e the variable z, so all is perfect.
Probably we have forgotten to store this function correctly ? We review the respective calclist
(again an Unsynchronized.ref to be removed in order to adjust to Isabelle/Isar’s asynchronous docu-
ment model):

01 calclist:= overwritel (! calclist,
02 [("argument_in",
03 ("Build_Inverse_Z_Transform.argument’_in", eval_argument_in "")),
04 ...
05]);

The entry is perfect. So what is the reason ? Ah, probably there is something messed up with the
many rule-sets in the method, see §3.5 — right, the function argument in is not contained in the
respective rule-set srls . . . this just as an example of the intricacies in debugging a program in the
present state of the prototype.

4.2 Implementation in Isabelle/ISAC
Given all the prerequisites from §3.1 to §3.5, usually developed within several iterations, the program
can be assembled; on p.101 there is the complete program of the running example.

The completion of this program required efforts for several weeks (after some months of familiari-
sation with ISAC), caused by the abundance of intricacies indicated above. Also writing the program
is not pleasant, given Isabelle/Isar/ without add-ons for programming. Already writing and parsing a
few lines of program code is a challenge: the program is an Isabelle term; Isabelle’s parser, however,
is not meant for huge terms like the program of the running example. So reading out the specific error
(usually type errors) from Isabelle’s message is difficult.

Testing the evaluation of the program has to rely on very simple tools. Step-wise execution is
modeled by a function me, short for mathematics-engine 18:

01 ML {* me; *}
02 val it = tac -> ctree * pos -> mout * tac * ctree * pos

18The interface used by the front-end which created the calculation on p.93 is different from this function

103

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

This function takes as arguments a tactic tac which determines the next step, the step applied to
the interpreter-state ctree * pos as last argument taken. The interpreter-state is a pair of a tree
ctree representing the calculation created (see the example below) and a position pos in the calcu-
lation. The function delivers a quadruple, beginning with the new formula mout and the next tactic
followed by the new interpreter-state.

This function allows to stepwise check the program:

01 ML {*
02 val fmz =
03 ["filterExpression (X z = 3 / ((z::real) + 1/10 - 1/50*(1/z)))",
04 "stepResponse (x[n::real]::bool)"];
05 val (dI,pI,mI) =
06 ("Isac",
07 ["Inverse", "Z_Transform", "SignalProcessing"],
08 ["SignalProcessing","Z_Transform","Inverse"]);
09 val (mout, tac, ctree, pos) = CalcTreeTEST [(fmz, (dI, pI, mI))];
10 val (mout, tac, ctree, pos) = me tac (ctree, pos);
11 val (mout, tac, ctree, pos) = me tac (ctree, pos);
12 val (mout, tac, ctree, pos) = me tac (ctree, pos);
13 ...

Several dozens of calls for me are required to create the lines in the calculation below (including the
sub-problems not shown). When an error occurs, the reason might be located many steps before: if
evaluation by rewriting, as done by the prototype, fails, then first nothing happens — the effects come
later and cause unpleasant checks.

The checks comprise watching the rewrite-engine for many different kinds of rule-sets (see §3.5),
the interpreter-state, in particular the environment and the context at the states position — all checks
have to rely on simple functions accessing the ctree. So getting the calculation below (which
resembles the calculation in Fig.1 on p.93) is the result of several weeks of development:

01 • Problem (Inverse Z Transform, [Inverse, Z Transform, SignalProcessing])
02 ` Xz = 3

z− 1
4
− 1

8
·z−1 Take X eq

03 Xz = 3
z+−1

4
+−1

8
· 1
z

Rewrite prep for part frac X eq

04 • Problem [partial fraction,rational,simplification] SubProblem . . .
05 ` 3

z+−1
4
+−1

8
· 1
z

= - - -

06 24
−1+−2·z+8·z2 - - -

07 • solve (−1 +−2 · z + 8 · z2, z) - - -
08 ` 3

z+−1
4
+−1

8
· 1
z

= 0 - - -

09 z = 2+
√
−4+8
16 ∨ z = 2−

√
−4+8
16 - - -

10 z = 1
2 ∨ z = - - -

- - -
11 . . . 4

z− 1
2

+ −4
z−−1

4

12 X ′z = ‡−1(4
z− 1

2

+ −4
z−−1

4

) Take ((X’::real => bool) z = ZZ 1 part frac)

13 X ′z = ‡−1(4 · z
z− 1

2

+−4 · z
z−−1

4

) Rewrite Set prep for inverse z X’ eq

14 X ′z = 4 · (12)
n · u[n] +−4 · (−1

4)n · u[n] Rewrite Set inverse z X’ eq
15 . . . X ′z = 4 · (12)

n · u[n] +−4 · (−1
4)n · u[n] Check Postcond

104

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

The tactics on the right margin of the above calculation are those in the program on p.101 which
create the respective formulas on the left.

4.3 Transfer into the Isabelle/ISAC Knowledge
Finally Build Inverse Z Transform.thy has got the job done and the knowledge accumulated in it
can be distributed to appropriate theories: the program to Inverse Z Transform.thy, the sub-problem
accomplishing the partial fraction decomposition to Partial Fractions.thy. Since there are hacks into
Isabelle’s internals, this kind of distribution is not trivial. For instance, the function argument in
in §3.3 explicitly contains a string with the theory it has been defined in, so this string needs to be
updated from Build Inverse Z Transform to Atools if that function is transferred to theory
Atools.thy.

In order to obtain the functionality presented in Fig.1 on p.93 data must be exported from SML-
structures to XML. This process is also rather bare-bones without authoring tools and is described in
detail in the ISAC wiki 19.

5 Summary and Conclusions
A brief re-introduction of the novel kind of programming language by example of the ISAC-prototype
makes the paper self-contained. The main section describes all the main concepts involved in TP-
based programming and all the sub-tasks concerning respective implementation in the ISAC prototype:
mechanisation of mathematics and domain modeling, implementation of term rewriting systems for
the rewriting-engine, formal (implicit) specification of the problem to be (explicitly) described by
the program, implementation of the many components required for Lucas-Interpretation and finally
implementation of the program itself.

The many concepts and sub-tasks involved in programming require a comprehensive work-flow;
first experiences with the work-flow as supported by the present prototype are described as well:
Isabelle + Isar + jEdit provide appropriate components for establishing an efficient development envi-
ronment integrating computation and deduction. However, the present state of the prototype is far off
a state appropriate for wide-spread use: the prototype of the program language lacks expressiveness
and elegance, the prototype of the development environment is hardly usable: error messages still
address the developer of the prototype’s interpreter rather than the application programmer, imple-
mentation of the many settings for the Lucas-Interpreter is cumbersome.

5.1 Conclusions for Future Development
From the above mentioned experiences a successful proof of concept can be concluded: program-
ming arbitrary problems from engineering sciences is possible, in principle even in the prototype.
Furthermore the experiences allow to conclude detailed requirements for further development:

1. Clarify underlying logics such that programming is smoothly integrated with verification of the
program; the post-condition should be proved more or less automatically, otherwise working
engineers would not encounter such programming.

19http://www.ist.tugraz.at/isac/index.php/Generate representations for ISAC Knowledge

105

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

2. Combine the prototype’s programming language with Isabelle’s powerful function package and
probably with more of SML’s pattern-matching features; include parallel execution on multi-
core machines into the language design.

3. Extend the prototype’s Lucas-Interpreter such that it also handles functions defined by use of Is-
abelle’s functions package; and generalize Isabelle’s code generator such that efficient code for
the whole definition of the programming language can be generated (for multi-core machines).

4. Develop an efficient development environment with integration of programming and proving,
with management not only of Isabelle theories, but also of large collections of specifications
and of programs.

5. Extend Isabelle’s computational features in direction of verfied Computer Algebra: simplifica-
tion extended by algorithms beyond rewriting (cancellation of multivariate rationals, factorisa-
tion, partial fraction decomposition, etc), equation solving , integration, etc.

Provided successful accomplishment, these points provide distinguished components for virtual work-
benches appealing to practitioners of engineering in the near future.

5.2 Preview to Development of Course Material
Interactive course material, as addressed by the title, can comprise step-wise problem solving created
as a side-effect of a TP-based program: The introduction §1 briefly shows that Lucas-Interpretation
not only provides an interactive programming environment, Lucas-Interpretation also can provide
TP-based services for a flexible dialogue component with adaptive user guidance for independent and
inquiry-based learning.

However, the ISAC prototype is not ready for use in field-tests, not only due to the above five
requirements not sufficiently accomplished, but also due to usability of the fron-end, in particular the
lack of an editor for formulas in 2-dimension representation.

Nevertheless, the experiences from the case study described in this paper, allow to give a preview
to the development of course material, if based on Lucas-Interpretation:

Development of material from scratch is too much effort just for e-learning; this has become clear
with the case study. For getting support for stepwise problem solving just in one example class, the
one presented in this paper, involved the following tasks:

• Adapt the equation solver; since that was too laborous, the program has been adapted in an
unelegant way.

• Implement an algorithms for partial fraction decomposition, which is considered a standard
normal form in Computer Algebra.

• Implement a specification for partial fraction decomposition and locate it appropriately in the
hierarchy of specification.

• Declare definitions and theorems within the theory of Z-transform, and prove the theorems
(which was not done in the case study).

106

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

On the other hand, for the one the class of problems implemented, adding an arbitrary number of
examples within this class requires a few minutes 20 and the support for individual stepwise problem
solving comes for free.

E-learning benefits from Formal Domain Engineering which can be expected for various do-
mains in the near future. In order to cope with increasing complexity in domain of technology,
specific domain knowledge is beeing mechanised, not only for software technology 21 but also for
other engineering domains [5, 8, 3]. This fairly new part of engineering sciences is called “domain
engineering” in [2].

Given this kind of mechanised knowledge including mathematical theories, domain specific defi-
nitions, specifications and algorithms, theorems and proofs, then e-learning with support for individ-
ual stepwise problem solving will not be much ado anymore; then e-learning media in technology
education can be derived from this knowledge with reasonable effort.

Development differentiates into tasks more separated than without Lucas-Interpretation and more
challenginging in specific expertise. These are the kinds of experts expected to cooperate in develop-
ment of

• “Domain engineers”, who accomplish fairly novel tasks described in this paper.

• Course designers, who provide the instructional design according to curricula, together with
usability experts and media designers, are indispensable in production of e-learning media at
the state-of-the art.

• “Dialog designers”, whose part of development is clearly separated from the part of domain
engineers as a consequence of Lucas-Interpretation: TP-based programs are functional, as men-
tioned, and are only concerned with describing mathematics — and not at all concerned with
interaction, psychology, learning theory and the like, because there are no in/output statements.
Dialog designers can expect a high-level rule-based language [4] for describing their part.

For this decade there seems to be a window of opportunity opening from one side inreasing demand
for formal domain engineering and from the other side from TP more and more gaining industrial
relevance. Within this window, development of TP-based educational software can take benefit from
the fact, that the TPs leading in Europe, Coq [6] and Isabelle are still open source together with the
major part of mechanised knowledge.

References
[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

[2] Dines Bjørner. Software Engineering, volume 3 of Texts in Theoretical Computer Science. Springer,
Berlin, Heidelberg, 2006.

20As shown in Fig.1, an example is called from an HTML-file by an URL, which addresses an XML-structure holding
the respective data as shown on p.104.

21For instance, the Archive of Formal Proofs http://afp.sourceforge.net/

107

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

[3] Dines Bjørner. Domain Engineering. Technology Management, Research and Engineering, volume 4 of
COE Research Monograph Series. JAIST Press, Nomi, Japan, Feb 2009.

[4] Gabriella Daróczy and Walther Neuper. Error-patterns within “next-step-guidance” in tp-based educa-
tional systems. In unknown. The Electronic Journal of Mathematics and Technology, 2013. to appear in
this publication.

[5] Babak Dehbonei and Fernando Mejia. Formal methods in the railways signalling industry. In M. Bertran
M. Naftalin, T. Denvir, editor, FME’94:Industrial Benefit of Formal Methods, pages 26–34. Springer-
Verlag, October 1994.

[6] Coq development team. Coq 8.3 reference manual. http://coq.inria.fr/reman, 2010. INRIA.

[7] Florian Haftmann, Cezary Kaliszyk, and Walther Neuper. CTP-based programming languages ? con-
siderations about an experimental design. ACM Communications in Computer Algebra, 44(1/2):27–41,
March/June 2010.

[8] Kirsten Mark Hansen. Validation of a railway interlocking model. In M. Bertran M. Naftalin, T. Denvir,
editor, FME’94: Industrial Benefit of Formal Methods, pages 582–601. Springer-Verlag, October 1994.

[9] J. Roger Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, 1997.

[10] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System Science
(JCSS), 0(17):348–374, 1978.

[11] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML (Re-
vised). The MIT Press, Cambridge, London, 1997.

[12] Walther Neuper. Automated generation of user guidance by combining computation and deduction. In
Pedro Quaresma, editor, THedu’11: CTP-compontents for educational software. EPTCS, 2012. To ap-
pear.

[13] Tobias Nipkow. Programming and proving in Isabelle/HOL. contained in the Isabelle distribution, May
22 2012.

[14] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

[15] A.V. Oppenheim and R.W. Schafer. Discrete-time signal processing. Prentice-Hall signal processing
series. Prentice Hall, 2010.

[16] Jan Rocnik. Interactive course material for signal processing based on isabelle/ISAC. Bakkalaureate
Thesis, 2012. IST, SPSC, Graz University of Technology, http://www.ist.tugraz.at/projects/isac/publ/jroc-
nik bakk.pdf.

[17] Makarius Wenzel. Parallel proof checking in Isabelle/Isar. In Dos Reis and L. Théry, editors, ACM
SIGSAM 2009 International Workshop on Programming Languages for Mechanized Mathematics Systems
(PLMMS), Munich, August 2009. ACM Digital library.

[18] Makarius Wenzel. Isabelle as document-oriented proof assistant. In Proceedings of the 18th Calcule-
mus and 10th international conference on Intelligent computer mathematics, MKM’11, pages 244–259,
Berlin, Heidelberg, 2011. Springer-Verlag.

108

The Electronic Journal of Mathematics and Technology, Volume 7, Number 2, ISSN 1933-2823

[19] Makarius Wenzel. Isabelle/jEdit a prover ide within the PIDE framework. In J. Jeuring et al., editors,
Conference on Intelligent Computer Mathematics (CICM 2012), number 7362 in LNAI. Springer, 2012.

[20] Wikipedia. Table of common z-transform pairs, 2012. [Online; accessed 31-Oct-2012].

109

	Introduction
	ISACS's Prototype for a Programming Language
	The Executable Fragment of Isabelle's Language
	ISAC's Tactics for Lucas-Interpretation
	Tactics as Control Flow Statements

	Concepts and Tasks in TP-based Programming
	Mechanization of Math — Domain Engineering
	Preparation of Simplifiers for the Program
	Preparation of ML-Functions
	Specification of the Problem
	Implementation of the Method
	Implementation of the TP-based Program

	Work-flow of Programming in the Prototype
	Preparations and Trials
	Implementation in Isabelle/ISAC
	Transfer into the Isabelle/ISAC Knowledge

	Summary and Conclusions
	Conclusions for Future Development
	Preview to Development of Course Material

